135 research outputs found

    LOOKING INTO THE ENERGY LANDSCAPE OF MYOGLOBIN

    Get PDF
    Using the haem group of myoglobin as a probe in optical experiments makes it possible to study its conformational fluctuations in real time. Results of these experiments can be directly interpreted in terms of the structure of the potential energy surface of the protein. The current view is that proteins have rough energy landscapes comprising a large number of minima which represent conformational substates, and that these substates are hierarchically organized. Here, we show that the energy landscape is characterized by a number of discrete distributions of;barrier heights each representing a tier within a hierarchy of conformational substates. Furthermore, we provide evidence that the energy surface is self-similar and offer suggestions for a characterization of the protein fluctuations

    The ASDEX Upgrade divertor IIb—a closed divertor for strongly shaped plasmas

    Get PDF
    A new divertor configuration (DIV-IIb) has been implemented in ASDEX Upgrade. In order to accommodate a large variety of plasma shapes with bottom triangularities (δbot) up to 0.48, the outer strikepoint region was modified and the roof baffle was lowered and diminished at its outer part in comparison with the previous divertor (DIV-II). The inner part of the divertor strikepoint module remains unchanged, but a smooth transition to the central column is provided at the divertor entrance to minimize local hydrogen recycling. An increase in power density is observed due to geometrical reasons at the outer target, whereas the divertor radiation for similar configurations and discharge conditions is unchanged. The pumping characteristics for D and He are almost retained, suggesting a large influence of the inner divertor leg, the configuration of which remains as before. Detachment in L-mode discharges fits well into a scaling deduced from JET data and earlier ASDEX Upgrade data. A significant reduction (20%) of the L–H threshold is observed compared with DIV-II. Its density dependence is weaker than in the previous DIV-II configuration and there are hints for an influence of triangularity on power threshold. Finally, clear evidence for a parasitic plasma below the divertor roof baffle is found
    • …
    corecore